

Certificate ID: 85189

Received: 8/4/22

Client Sample ID: Get Relief Bath Bomb

Lot Number:

Matrix: Personal Care - Bath Bombs

Chris Hudalla, Chief Science Officer

Scan QR Code

Thrive 1023 dba Soul CBD

700 E. Dayton Rd Ottawa, IL 61350

Attn: Sean Marks

Authorization:

Signature:

Inistophen Hudalla

Date:

8/21/2022

The data contained within this report was collected in accordance with the requirements of ISO/IEC17025:2017. I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the test article listed in this report. Reports may not be reproduced except in their entirety.

CN: Cannabinoid Profile & Potency [WI-10-17 & WI-10-17-01]

Analyst: JFD

Test Date: 8/18/2022

The client sample was analyzed for plant-based cannabinoids by Liquid Chromatography (LC). The collected data was compared to data collected for certified reference standards at known concentrations.

85189-CN

Weight %	oncentration (mg/Bath Boml			
ND	ND			
ND	ND			
0.0224	33.2			
ND	ND			
0.0224	33.2	0%	Cannabinoids (wt%)	0.0%
ND	ND			
0.0224	33.2			
	ND N	ND ND ND ND 0.0224 33.2 ND ND 0.0224 33.2 ND ND	ND ND ND ND 0.0224 33.2 ND ND 0.0224 33.2 ND ND ND ND	ND ND ND ND 0.0224 33.2 ND ND 0.0224 33.2 0% Cannabinoids (wt%) ND ND

Limit of Quantitation (LOQ) = 0.0024 wt%

Max THC (and Max CBD) are calculated values for total cannabinoids after heating, assuming complete decarboxylation of the acid to the neutral form. It is calculated based on the weight loss of the acid group during decarboxylation: Max THC = (0.877 x THCA) + THC. This calculation does not include other cannabinoid isomers (eg. D8-THC and exo-THC). ND = None detected above the limits of detection (LOD), which is one third of LOQ.

HM: Heavy Metal Analysis [WI-10-13]

Analyst: CJS

Test Date: 8/13/2022

This test method was performed in accordance with the requirements of ISO/IEC 17025. These results relate only to the test article listed in this report. Reports may not be reproduced except in their entirety.

85189-HM	Use Limits ² (μg/kg)					
Symbol	Metal	Conc. 1 (µg/kg)	RL	All	Ingestion	Status
As	Arsenic	ND	50.0	200	1,500	PASS
Cd	Cadmium	ND	50.0	200	500	PASS
Hg	Mercury	ND	50.0	100	1,500	PASS
Pb	Lead	ND	50.0	500	1,000	PASS

- 1) ND = None detected to Lowest Limits of Detection (LLD)
- 2) MA Dept. of Public Health: Protocol for MMJ and MIPS, Exhibit 4(a) for all products.
- 3) USP exposure limits based on daily oral dosing of 1g of concentrate for a 110 lb person.

MB1: Microbiological Contaminants [WI-10-09]

Analyst: MM Test Date: 8/5/2022

This test method was performed in accordance with the requirements of ISO/IEC 17025. These results relate only to the test article listed in this report. Reports may not be reproduced except in their entirety.

85189-MB1

Symbol	Analysis	Results	Units	Limits*	Status
AC	Total Aerobic Bacterial Count	<100	CFU/g	100,000 CFU/g	PASS
CC	Total Coliform Bacterial Count	<100	CFU/g	1,000 CFU/g	PASS
EB	Total Bile Tolerant Gram Negative Count	<100	CFU/g	1,000 CFU/g	PASS
YM	Total Yeast & Mold	<100	CFU/g	10,000 CFU/g	PASS

Recommended limits established by the American Herbal Pharmacopoeia (AHP) monograph for Cannabis Inflorescence [2013], for consumable botanical products, including processed and unprocessed cannabis materials, and solvent-based extracts. Note: All recorded Microbiological tests are within the established limits.

MB2: Pathogenic Bacterial Contaminants [WI-10-10]

Analyst: MM

Test Date: 8/6/2022

This test method was performed in accordance with the requirements of ISO/IEC 17025. These results relate only to the test article listed in this report. Reports may not be reproduced except in their entirety.

85189-MB2

Test ID	Analysis	Results	Units	Limits*	Status
85189-ECPT	E. coli (O157)	Negative	NA	Non Detected	PASS
85189-SPT	Salmonella	Negative	NA	Non Detected	PASS

Note: All recorded pathogenic bacteria tests passed.

PST: Pesticide Analysis [WI-10-11]

Analyst: CJR

Test Date: 8/13/2022

The client sample was anlayzed for pesticides using Liquid Chromatography with Mass Spectrometric detection (LC/MS/MS). The method used for sample prep was based on the European method for pesticide analysis (EN 15662).

85189-PST

 Analyte	CAS	Result	Units	LLD	Limits (ppb)	Status
Abamectin	71751-41-2	ND	ppb	0.20	300	PASS
Spinosad	168316-95-8	ND	ppb	0.10	3000	PASS
Pyrethrin	8003-34-7	ND	ppb	0.10	1000	PASS
Trifloxystrobin	141517-21-7	ND	ppb	0.10	30000	PASS
Spirotetramat	203313-25-1	ND	ppb	0.10	13000	PASS
Spiromesifen	283594-90-1	ND	ppb	0.10	12000	PASS
Piperonyl butoxide	51-03-6	ND	ppb	0.10	8000	PASS
Paclobutrazol	76738-62-0	ND	ppb	0.10	10	PASS
Myclobutanil	88671-89-0	ND	ppb	0.10	9000	PASS
Imidacloprid	138261-41-3	ND	ppb	0.10	3000	PASS
Imazalil	35554-44-0	ND	ppb	0.10	10	PASS
Fenoxycarb	72490-01-8	ND	ppb	0.10	10	PASS
Etoxazole	153233-91-1	ND	ppb	0.10	1500	PASS
Dichlorvos	62-73-7	ND	ppb	3.00	10	PASS
Cyfluthrin	68359-37-5	ND	ppb	0.50	1000	PASS
Bifenthrin	82657-04-3	ND	ppb	0.20	500	PASS
Bifenazate	149877-41-8	ND	ppb	0.10	5000	PASS
Azoxystrobin	131860-33-8	ND	ppb	0.10	40000	PASS

^{*} Testing limits for ingestion established by the State of California: CCR, Title 16, Division 42, Chapter 5, Section 5313. ND indicates "none detected" above the lower limit of detection (LLD). Analytes marked with (*) indicate analytes for which no recovery was observed for a pre-spiked matrix sample.

END OF REPORT